80.11.14 problem 14 (a)

Internal problem ID [21422]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 12. Stability theory. Excercise 12.6 at page 270
Problem number : 14 (a)
Date solved : Thursday, October 02, 2025 at 07:31:07 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 490
ode:=diff(diff(diff(x(t),t),t),t)+a*diff(diff(x(t),t),t)+b*diff(x(t),t)+c*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = {\mathrm e}^{-\frac {t a}{3}} \left (c_3 \,{\mathrm e}^{\frac {t \left (\left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{2}/{3}}+4 a^{2}-12 b \right )}{6 \left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{1}/{3}}}}+c_2 \,{\mathrm e}^{\frac {\left (i \left (\left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{2}/{3}}-4 a^{2}+12 b \right ) \sqrt {3}-\left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{2}/{3}}-4 a^{2}+12 b \right ) t}{12 \left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{1}/{3}}}}+c_1 \,{\mathrm e}^{\frac {\left (-i \left (\left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{2}/{3}}-4 a^{2}+12 b \right ) \sqrt {3}-\left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{2}/{3}}-4 a^{2}+12 b \right ) t}{12 \left (36 b a -108 c -8 a^{3}+12 \sqrt {81 c^{2}+\left (12 a^{3}-54 b a \right ) c -3 b^{2} a^{2}+12 b^{3}}\right )^{{1}/{3}}}}\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 84
ode=D[x[t],{t,3}]+a*D[x[t],{t,2}]+b*D[x[t],t]+c*x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to c_1 e^{t \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 a+\text {$\#$1} b+c\&,1\right ]}+c_2 e^{t \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 a+\text {$\#$1} b+c\&,2\right ]}+c_3 e^{t \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 a+\text {$\#$1} b+c\&,3\right ]} \end{align*}
Sympy. Time used: 0.205 (sec). Leaf size: 24
from sympy import * 
t = symbols("t") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
x = Function("x") 
ode = Eq(a*Derivative(x1(t), (t, 2)) + b*Derivative(x1(t), t) + c*x(t) + Derivative(x1(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {- a \frac {d^{2}}{d t^{2}} x_{1}{\left (t \right )} - b \frac {d}{d t} x_{1}{\left (t \right )} - \frac {d^{3}}{d t^{3}} x_{1}{\left (t \right )}}{c} \]