Internal
problem
ID
[21584]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
9.
Clairaut
Equation.
Page
133.
Problem
number
:
9-1
Date
solved
:
Thursday, October 02, 2025 at 07:58:40 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=(x*diff(y(x),x)-y(x))^2-diff(y(x),x)^2-1 = 0; dsolve(ode,y(x), singsol=all);
ode=(x*D[y[x],x]-y[x] )^2-D[y[x],x]^2-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x*Derivative(y(x), x) - y(x))**2 - Derivative(y(x), x)**2 - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out