Internal
problem
ID
[21585]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
9.
Clairaut
Equation.
Page
133.
Problem
number
:
9-2
Date
solved
:
Thursday, October 02, 2025 at 07:58:40 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
ode:=(x^2-1)*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+y(x)^2-1 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-1)*D[y[x],x]^2-2*x*y[x]*D[y[x],x]+y[x]^2-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), x)**2 + y(x)**2 - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out