Internal
problem
ID
[21831]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-13
Date
solved
:
Thursday, October 02, 2025 at 08:02:39 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-3*diff(y(t),t)+2*y(t) = exp(-t); ic:=[y(1) = 0, D(y)(1) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-3*D[y[t],t]+2*y[t]==Exp[-t]; ic={y[1]==0,Derivative[1][y][1] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*y(t) - 2*Derivative(y(t), (t, 2)) - exp(-t),0) ics = {y(1): 0, Subs(Derivative(y(t), t), t, 1): 0} dsolve(ode,func=y(t),ics=ics)