Internal
problem
ID
[21832]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-14
Date
solved
:
Thursday, October 02, 2025 at 08:02:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+y(t) = t; ic:=[y(0) = -3, y(1) = -1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+y[t]==t; ic={y[0]==-3,y[1] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + y(t) + 3*Derivative(y(t), (t, 2)),0) ics = {y(0): -3, y(1): -1} dsolve(ode,func=y(t),ics=ics)