Internal
problem
ID
[21840]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-22
Date
solved
:
Thursday, October 02, 2025 at 08:02:45 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y(t),t)+z(t) = t, diff(z(t),t)+4*y(t) = 0]; ic:=[z(0) = -1, y(0) = 1]; dsolve([ode,op(ic)]);
ode={D[y[t],t]+z[t]==t,D[z[t],t]+4*y[t]==0}; ic={z[0]==-1,y[0]==1}; DSolve[{ode,ic},{z[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") z = Function("z") y = Function("y") ode=[Eq(-t + z(t) + Derivative(y(t), t),0),Eq(4*y(t) + Derivative(z(t), t),0)] ics = {z(0): -1, y(0): 1} dsolve(ode,func=[z(t),y(t)],ics=ics)