Internal
problem
ID
[21841]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-23
Date
solved
:
Thursday, October 02, 2025 at 08:02:45 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(w(t),t)+y(t) = sin(t), diff(y(t),t)-z(t) = exp(t), w(t)+y(t)+diff(z(t),t) = 1]; ic:=[w(0) = 0, z(0) = 1, y(0) = 1]; dsolve([ode,op(ic)]);
ode={D[w[t],t]+y[t]==Sin[t],D[y[t],t]-z[t]==Exp[t],w[t]+y[t]+D[z[t],t]==1}; ic={w[0]==0,z[0]==1,y[0]==1}; DSolve[{ode,ic},{w[t],z[t],y[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") w = Function("w") z = Function("z") y = Function("y") ode=[Eq(y(t) - sin(t) + Derivative(w(t), t),0),Eq(-z(t) - exp(t) + Derivative(y(t), t),0),Eq(w(t) + y(t) + Derivative(z(t), t) - 1,0)] ics = {w(0): 0, z(0): 1, y(0): 1} dsolve(ode,func=[w(t),z(t),y(t)],ics=ics)
Timed Out