Internal
problem
ID
[22040]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
XV.
The
Laplace
Transform.
Ex.
XXIII
at
page
251
Problem
number
:
6
(a)
Date
solved
:
Thursday, October 02, 2025 at 08:22:39 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+diff(y(t),t)-y(t) = 0, diff(y(t),t)+2*y(t)+diff(z(t),t)+2*z(t) = 2, x(t)+diff(z(t),t)-z(t) = 0]; ic:=[x(0) = 0, y(0) = 0, z(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]+D[y[t],t]-y[t]==0,D[y[t],t]+2*y[t]+D[z[t],t]+2*z[t]==2,x[t]+D[z[t],t]-z[t]==0}; ic={x[0]==0,y[0]==0,z[0]==0}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-y(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(2*y(t) + 2*z(t) + Derivative(y(t), t) + Derivative(z(t), t) - 2,0),Eq(x(t) - z(t) + Derivative(z(t), t),0)] ics = {y(0): 0, z(0): 0} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)