Internal
problem
ID
[22041]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
XV.
The
Laplace
Transform.
Ex.
XXIII
at
page
251
Problem
number
:
6
(b)
Date
solved
:
Sunday, October 12, 2025 at 05:52:18 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(x(t),t),t) = 1, diff(x(t),t)+x(t)+diff(diff(y(t),t),t)-9*y(t)+diff(z(t),t)+z(t) = 0, 5*x(t)+diff(diff(z(t),t),t)-4*z(t) = 2]; ic:=[x(0) = 0, y(0) = 0, z(0) = 0, D(x)(0) = 0, D(y)(0) = 0, D(z)(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,2}]==0,D[x[t],t]+x[t]+D[y[t],{t,2}]-9*y[t]+D[z[t],t]+z[t]==0,5*x[t]+D[z[t],{t,2}]-4*z[t]==2}; ic={x[0]==0,y[0]==0,z[0]==0,Derivative[1][x][0] ==0,Derivative[1][y][0] ==0,Derivative[1][z][0] ==0}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(Derivative(x(t), (t, 2)) - 1,0),Eq(x(t) - 9*y(t) + z(t) + Derivative(x(t), t) + Derivative(y(t), (t, 2)) + Derivative(z(t), t),0),Eq(5*x(t) - 4*z(t) + Derivative(z(t), (t, 2)) - 2,0)] ics = {y(0): 0, z(0): 0, Subs(Derivative(x(t), t), t, 0): 1, Subs(Derivative(y(t), t), t, 0): 1, Subs(Derivative(z(t), t), t, 0): 1} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
NotAlgebraic : Integral(5/4, (t, 0)) does not seem to be an algebraic element