84.44.4 problem 37.15

Internal problem ID [22401]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 37. Second Order Boundary Value Problems. Supplementary problems
Problem number : 37.15
Date solved : Thursday, October 02, 2025 at 08:38:18 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-1 \\ y \left (\frac {\pi }{2}\right )&=1 \\ \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 11
ode:=diff(diff(y(x),x),x)+y(x) = 0; 
ic:=[y(0) = -1, y(1/2*Pi) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \sin \left (x \right )-\cos \left (x \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 12
ode=D[y[x],{x,2}]+y[x]==0; 
ic={y[0]==-1,y[Pi/2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sin (x)-\cos (x) \end{align*}
Sympy. Time used: 0.034 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): -1, y(pi/2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x + \left (1 - \frac {\pi }{2}\right ) \sin {\left (x \right )} - \cos {\left (x \right )} \]