84.44.5 problem 37.16

Internal problem ID [22402]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 37. Second Order Boundary Value Problems. Supplementary problems
Problem number : 37.16
Date solved : Thursday, October 02, 2025 at 08:38:19 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=0 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 8
ode:=diff(diff(y(x),x),x)+y(x) = 0; 
ic:=[y(1/2*Pi) = 0, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = c_2 \cos \left (x \right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 10
ode=D[y[x],{x,2}]+y[x]==0; 
ic={y[Pi/2]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos (x) \end{align*}
Sympy. Time used: 0.026 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(pi/2): 0, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \cos {\left (x \right )} \]