Internal
problem
ID
[23005]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
A
Exercises
at
page
444
Problem
number
:
1
(h)
Date
solved
:
Thursday, October 02, 2025 at 09:17:27 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+2*x(t)+diff(y(t),t)-y(t) = -sin(t), diff(x(t),t)-3*x(t)+diff(y(t),t)+2*y(t) = 4*cos(t)]; dsolve(ode);
ode={D[x[t],{t,1}]+2*x[t]+D[y[t],t]-y[t]==-Sin[t],D[x[t],{t,1}]-3*x[t]+D[y[t],t]+2*y[t]==4*Cos[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) - y(t) + sin(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-3*x(t) + 2*y(t) - 4*cos(t) + Derivative(x(t), t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)