Internal
problem
ID
[23006]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
A
Exercises
at
page
444
Problem
number
:
3
Date
solved
:
Sunday, October 12, 2025 at 05:55:05 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(x(t),t),t)+2*diff(y(t),t)+8*x(t) = 32*t, diff(diff(y(t),t),t)+3*diff(x(t),t)-2*y(t) = 60*exp(-t)]; ic:=[x(0) = 6, D(x)(0) = 0, y(0) = -24, D(y)(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,2}]+2*D[y[t],t]+8*x[t]==32*t,D[y[t],{t,2}]+3*D[x[t],t]-2*y[t]==60*Exp[-t]}; ic={x[0]==0,Derivative[1][x][0] ==0,y[0]==-24,Derivative[1][y][0] ==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-32*t + 8*x(t) + Derivative(x(t), (t, 2)) + 2*Derivative(y(t), t),0),Eq(-2*y(t) + 3*Derivative(x(t), t) + Derivative(y(t), (t, 2)) - 60*exp(-t),0)] ics = {x(0): 0, y(0): -24, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=[x(t),y(t)],ics=ics)