Internal
problem
ID
[23014]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
B
Exercises
at
page
445
Problem
number
:
2
(b)
Date
solved
:
Sunday, October 12, 2025 at 05:55:06 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = x(t)*y(t), diff(y(t),t) = y(t)^2+1, diff(z(t),t) = z(t)]; dsolve(ode);
ode={D[x[t],{t,1}]==x[t]*y[t],D[y[t],{t,1}]==y[t]^2+1,D[z[t],t]==z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t)*y(t) + Derivative(x(t), t),0),Eq(-y(t)**2 + Derivative(y(t), t) - 1,0),Eq(-z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
KeyError : F2_