Internal
problem
ID
[23015]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
B
Exercises
at
page
445
Problem
number
:
3
Date
solved
:
Sunday, October 12, 2025 at 05:55:06 AM
CAS
classification
:
system_of_ODEs
ode:=[t^2*diff(diff(y(t),t),t)+t*diff(z(t),t)+z(t) = t, t*diff(y(t),t)+z(t) = ln(t)]; dsolve(ode);
ode={t^2*D[y[t],{t,2}]+t*D[z[t],t]+z[t]==t,t*D[y[t],{t,1}]+z[t]==Log[t]}; ic={}; DSolve[{ode,ic},{y[t],z[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") z = Function("z") ode=[Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(z(t), t) - t + z(t),0),Eq(t*Derivative(y(t), t) + z(t) - log(t),0)] ics = {} dsolve(ode,func=[y(t),z(t)],ics=ics)
KeyError : Derivative(z(t), t)