Internal
problem
ID
[23025]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
B
Exercises
at
page
491
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 09:17:35 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+y(t), diff(y(t),t) = x(t)-y(t), diff(z(t),t) = 2*y(t)]; ic:=[x(0) = 2, y(0) = 0, z(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]==x[t]+y[t],D[y[t],{t,1}]==x[t]-y[t],D[z[t],t]==2*y[t]}; ic={x[0]==2,y[0]==0,z[0]==0}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - y(t) + Derivative(x(t), t),0),Eq(-x(t) + y(t) + Derivative(y(t), t),0),Eq(-2*y(t) + Derivative(z(t), t),0)] ics = {x(0): 2, y(0): 0, z(0): 0} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)