Internal
problem
ID
[23026]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
10.
Systems
of
differential
equations
and
their
applications.
B
Exercises
at
page
491
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:17:35 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+y(t)+z(t), diff(y(t),t) = 2*x(t)+5*y(t)+3*z(t), diff(z(t),t) = 3*x(t)+9*y(t)+5*z(t)]; ic:=[x(0) = -2, y(0) = -1, z(0) = 3]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]==x[t]+y[t]+z[t],D[y[t],{t,1}]==2*x[t]+5*y[t]+3*z[t],D[z[t],t]==3*x[t]+9*y[t]+5*z[t]}; ic={x[0]==-2,y[0]==-1,z[0]==3}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - y(t) - z(t) + Derivative(x(t), t),0),Eq(-2*x(t) - 5*y(t) - 3*z(t) + Derivative(y(t), t),0),Eq(-3*x(t) - 9*y(t) - 5*z(t) + Derivative(z(t), t),0)] ics = {x(0): -2, y(0): -1, z(0): 3} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)