Internal
problem
ID
[23059]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
11.
Matrix
eigenvalue
methods
for
systems
of
linear
differential
equations.
A
Exercises
at
page
528
Problem
number
:
2
(d)
Date
solved
:
Thursday, October 02, 2025 at 09:18:26 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+2*x(t)-y(t) = 100*sin(t), diff(y(t),t)-4*x(t)-y(t) = 36*t]; ic:=[x(0) = -8, y(0) = -21]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]+2*x[t]-y[t]==100*Sin[t], D[y[t],{t,1}]-4*x[t]-y[t]==36*t}; ic={x[0]==-8,y[0]==-21}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) - y(t) - 100*sin(t) + Derivative(x(t), t),0),Eq(-36*t - 4*x(t) - y(t) + Derivative(y(t), t),0)] ics = {x(0): -8, y(0): -21} dsolve(ode,func=[x(t),y(t)],ics=ics)