85.92.11 problem 2 (e)

Internal problem ID [23060]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 11. Matrix eigenvalue methods for systems of linear differential equations. A Exercises at page 528
Problem number : 2 (e)
Date solved : Thursday, October 02, 2025 at 09:18:27 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )-3 x \left (t \right )-6 y \left (t \right )&=9-9 t\\ \frac {d}{d t}y \left (t \right )+3 x \left (t \right )+3 y \left (t \right )&=9 t \,{\mathrm e}^{-3 t} \end{align*}
Maple. Time used: 0.257 (sec). Leaf size: 81
ode:=[diff(x(t),t)-3*x(t)-6*y(t) = 9-9*t, diff(y(t),t)+3*x(t)+3*y(t) = 9*exp(-3*t)*t]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \cos \left (3 t \right ) c_1 +\sin \left (3 t \right ) c_2 +3 t \,{\mathrm e}^{-3 t}+{\mathrm e}^{-3 t}-3 t +2 \\ y \left (t \right ) &= -\frac {\cos \left (3 t \right ) c_1}{2}+\frac {\cos \left (3 t \right ) c_2}{2}-\frac {\sin \left (3 t \right ) c_1}{2}-\frac {\sin \left (3 t \right ) c_2}{2}-3 t \,{\mathrm e}^{-3 t}-\frac {{\mathrm e}^{-3 t}}{2}+3 t -3 \\ \end{align*}
Mathematica. Time used: 0.624 (sec). Leaf size: 85
ode={D[x[t],{t,1}]-3*x[t]-6*y[t]==9*(1-t), D[y[t],{t,1}]+3*x[t]+3*y[t]==9*t*Exp[-3*t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 3 e^{-3 t} t-3 t+e^{-3 t}+c_1 \cos (3 t)+(c_1+2 c_2) \sin (3 t)+2\\ y(t)&\to -3 e^{-3 t} t+3 t-\frac {e^{-3 t}}{2}+c_2 \cos (3 t)-(c_1+c_2) \sin (3 t)-3 \end{align*}
Sympy. Time used: 0.346 (sec). Leaf size: 221
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(9*t - 3*x(t) - 6*y(t) + Derivative(x(t), t) - 9,0),Eq(-9*t*exp(-3*t) + 3*x(t) + 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - 3 t \sin ^{2}{\left (3 t \right )} - 3 t \cos ^{2}{\left (3 t \right )} + 3 t e^{- 3 t} \sin ^{2}{\left (3 t \right )} + 3 t e^{- 3 t} \cos ^{2}{\left (3 t \right )} - \left (C_{1} - C_{2}\right ) \cos {\left (3 t \right )} + \left (C_{1} + C_{2}\right ) \sin {\left (3 t \right )} + 2 \sin ^{2}{\left (3 t \right )} + 2 \cos ^{2}{\left (3 t \right )} + e^{- 3 t} \sin ^{2}{\left (3 t \right )} + e^{- 3 t} \cos ^{2}{\left (3 t \right )}, \ y{\left (t \right )} = C_{1} \cos {\left (3 t \right )} - C_{2} \sin {\left (3 t \right )} + 3 t \sin ^{2}{\left (3 t \right )} + 3 t \cos ^{2}{\left (3 t \right )} - 3 t e^{- 3 t} \sin ^{2}{\left (3 t \right )} - 3 t e^{- 3 t} \cos ^{2}{\left (3 t \right )} - 3 \sin ^{2}{\left (3 t \right )} - 3 \cos ^{2}{\left (3 t \right )} - \frac {e^{- 3 t} \sin ^{2}{\left (3 t \right )}}{2} - \frac {e^{- 3 t} \cos ^{2}{\left (3 t \right )}}{2}\right ] \]