Internal
problem
ID
[23061]
Book
:
Applied
Differential
Equations.
By
Murray
R.
Spiegel.
3rd
edition.
1980.
Pearson.
ISBN
978-0130400970
Section
:
Chapter
11.
Matrix
eigenvalue
methods
for
systems
of
linear
differential
equations.
A
Exercises
at
page
528
Problem
number
:
2
(f)
Date
solved
:
Thursday, October 02, 2025 at 09:18:28 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)-3*y(t)+exp(-t)*t, diff(y(t),t) = 2*x(t)-3*y(t)+exp(-t)]; dsolve(ode);
ode={D[x[t],{t,1}]==2*x[t]-3*y[t]+t*Exp[-t], D[y[t],{t,1}]==2*x[t]-3*y[t]+Exp[-t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-t*exp(-t) - 2*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 3*y(t) + Derivative(y(t), t) - exp(-t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)