Internal
problem
ID
[23204]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
9.
The
operational
method.
Exercise
9c
at
page
137
Problem
number
:
10
(a)
Date
solved
:
Thursday, October 02, 2025 at 09:24:21 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(x(t),t),t)+4*x(t) = sin(2*t)+2*t; dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+4*x[t]==Sin[2*t]+2*t; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-2*t + 4*x(t) - sin(2*t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)