Internal
problem
ID
[23205]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
9.
The
operational
method.
Exercise
9c
at
page
137
Problem
number
:
10
(b)
Date
solved
:
Thursday, October 02, 2025 at 09:24:22 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = x^2*exp(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*D[y[x],x]+y[x]==x^2*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(x) + y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)