Internal
problem
ID
[23210]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
10.
The
Laplace
transform.
Exercise
10c
at
page
156
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:24:24 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[4*diff(x(t),t)-2*y(t) = cos(2*t), x(t)-2*diff(y(t),t) = 0]; ic:=[x(0) = 0, y(0) = 0]; dsolve([ode,op(ic)]);
ode={4*D[x[t],{t,1}]-2*y[t]==Cos[2*t],x[t]-2*D[y[t],{t,1}]==0}; ic={x[0]==0,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*y(t) - cos(2*t) + 4*Derivative(x(t), t),0),Eq(x(t) - 2*Derivative(y(t), t),0)] ics = {x(0): 0, y(0): 0} dsolve(ode,func=[x(t),y(t)],ics=ics)