Internal
problem
ID
[23211]
Book
:
An
introduction
to
Differential
Equations.
By
Howard
Frederick
Cleaves.
1969.
Oliver
and
Boyd
publisher.
ISBN
0050015044
Section
:
Chapter
10.
The
Laplace
transform.
Exercise
10c
at
page
156
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:24:25 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+diff(y(t),t)+2*x(t)+y(t) = exp(-3*t), diff(y(t),t)+5*x(t)+3*y(t) = 5*exp(-t)]; ic:=[x(0) = -1, y(0) = 4]; dsolve([ode,op(ic)]);
ode={D[x[t],{t,1}]+D[y[t],t]+2*x[t]+y[t]==Exp[-3*t],D[y[t],{t,1}]+5*x[t]+3*y[t]==5*Exp[-t]}; ic={x[0]==-1,y[0]==4}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) + y(t) + Derivative(x(t), t) + Derivative(y(t), t) - exp(-3*t),0),Eq(5*x(t) + 3*y(t) + Derivative(y(t), t) - 5*exp(-t),0)] ics = {x(0): -1, y(0): 4} dsolve(ode,func=[x(t),y(t)],ics=ics)