86.12.5 problem 6

Internal problem ID [23212]
Book : An introduction to Differential Equations. By Howard Frederick Cleaves. 1969. Oliver and Boyd publisher. ISBN 0050015044
Section : Chapter 10. The Laplace transform. Exercise 10c at page 156
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:24:25 PM
CAS classification : system_of_ODEs

\begin{align*} 4 \frac {d}{d t}x \left (t \right )+2 \frac {d}{d t}y \left (t \right )+3 x \left (t \right )&=E \sin \left (t \right )\\ 4 x \left (t \right )+2 \frac {d}{d t}x \left (t \right )+3 y \left (t \right )&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0 \\ y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.277 (sec). Leaf size: 149
ode:=[4*diff(x(t),t)+2*diff(y(t),t)+3*x(t) = E*sin(t), 4*x(t)+2*diff(x(t),t)+3*y(t) = 0]; 
ic:=[x(0) = 0, y(0) = 0]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= \frac {{\mathrm e}^{\frac {\left (1+\sqrt {10}\right ) t}{2}} \left (11 \sqrt {10}+10\right ) E \sqrt {10}}{1850}+\frac {{\mathrm e}^{-\frac {\left (-1+\sqrt {10}\right ) t}{2}} \left (-10+11 \sqrt {10}\right ) E \sqrt {10}}{1850}+\frac {39 E \sin \left (t \right )}{185}-\frac {12 E \cos \left (t \right )}{185}-\frac {{\mathrm e}^{\frac {\left (1+\sqrt {10}\right ) t}{2}} \left (11 \sqrt {10}+10\right ) E}{370}+\frac {{\mathrm e}^{-\frac {\left (-1+\sqrt {10}\right ) t}{2}} \left (-10+11 \sqrt {10}\right ) E}{370} \\ y \left (t \right ) &= \frac {{\mathrm e}^{\frac {\left (1+\sqrt {10}\right ) t}{2}} \left (11 \sqrt {10}+10\right ) E}{370}-\frac {{\mathrm e}^{-\frac {\left (-1+\sqrt {10}\right ) t}{2}} \left (-10+11 \sqrt {10}\right ) E}{370}-\frac {12 E \sin \left (t \right )}{37}-\frac {2 E \cos \left (t \right )}{37} \\ \end{align*}
Mathematica. Time used: 0.593 (sec). Leaf size: 122
ode={4*D[x[t],{t,1}]+2*D[y[t],t]+3*x[t]==e*Sin[t],4*x[t]+2*D[x[t],{t,1}]+3*y[t]==0}; 
ic={x[0]==0,y[0]==0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {3}{370} e \left (e^{-\frac {1}{2} \left (\sqrt {10}-1\right ) t} \left (\left (4-3 \sqrt {10}\right ) e^{\sqrt {10} t}+4+3 \sqrt {10}\right )+26 \sin (t)-8 \cos (t)\right )\\ y(t)&\to \frac {1}{370} e \left (e^{-\frac {1}{2} \left (\sqrt {10}-1\right ) t} \left (\left (10+11 \sqrt {10}\right ) e^{\sqrt {10} t}+10-11 \sqrt {10}\right )-120 \sin (t)-20 \cos (t)\right ) \end{align*}
Sympy. Time used: 1.379 (sec). Leaf size: 502
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-e*sin(t) + 3*x(t) + 4*Derivative(x(t), t) + 2*Derivative(y(t), t),0),Eq(4*x(t) + 3*y(t) + 2*Derivative(x(t), t),0)] 
ics = {x(0): 0, y(0): 0} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {3 e \left (4 + 3 \sqrt {10}\right ) e^{\frac {t \left (1 - \sqrt {10}\right )}{2}}}{370} + \frac {3 e \left (4 - 3 \sqrt {10}\right ) e^{\frac {t \left (1 + \sqrt {10}\right )}{2}}}{370} + \frac {3 e \left (5 + 4 \sqrt {10}\right ) e^{\frac {t}{2}} \sin {\left (t \right )}}{10 \left (10 e^{\frac {t}{2}} + 11 \sqrt {10} e^{\frac {t}{2}}\right )} - \frac {3 e \left (\sqrt {10} + 5\right ) e^{\frac {t}{2}} \cos {\left (t \right )}}{5 \left (10 e^{\frac {t}{2}} + 11 \sqrt {10} e^{\frac {t}{2}}\right )} + \frac {3 e \left (\sqrt {10} + 10\right ) e^{\frac {t \left (1 + \sqrt {10}\right )}{2}} \sin {\left (t \right )}}{20 \left (2 \sqrt {10} e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}} + 15 e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}}\right )} + \frac {3 \sqrt {10} e e^{\frac {t \left (1 + \sqrt {10}\right )}{2}} \cos {\left (t \right )}}{10 \left (2 \sqrt {10} e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}} + 15 e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}}\right )}, \ y{\left (t \right )} = \frac {e \left (10 - 11 \sqrt {10}\right ) e^{\frac {t \left (1 - \sqrt {10}\right )}{2}}}{370} + \frac {e \left (10 + 11 \sqrt {10}\right ) e^{\frac {t \left (1 + \sqrt {10}\right )}{2}}}{370} + \frac {3 e \left (1 - \sqrt {10}\right ) e^{\frac {t}{2}} \sin {\left (t \right )}}{2 \left (10 e^{\frac {t}{2}} + 11 \sqrt {10} e^{\frac {t}{2}}\right )} + \frac {3 e e^{\frac {t}{2}} \cos {\left (t \right )}}{10 e^{\frac {t}{2}} + 11 \sqrt {10} e^{\frac {t}{2}}} - \frac {3 e \left (\sqrt {10} + 4\right ) e^{\frac {t \left (1 + \sqrt {10}\right )}{2}} \sin {\left (t \right )}}{4 \left (2 \sqrt {10} e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}} + 15 e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}}\right )} - \frac {e \left (2 + \sqrt {10}\right ) e^{\frac {t \left (1 + \sqrt {10}\right )}{2}} \cos {\left (t \right )}}{2 \left (2 \sqrt {10} e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}} + 15 e^{\frac {t}{2}} e^{\frac {\sqrt {10} t}{2}}\right )}\right ] \]