Internal
problem
ID
[23368]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
65
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 09:40:42 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=exp(x)*diff(y(x),x)^2+3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Exp[x]*D[y[x],{x,1}]^2+3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*y(x) + exp(x)*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)