87.8.15 problem 15

Internal problem ID [23369]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 65
Problem number : 15
Date solved : Thursday, October 02, 2025 at 09:40:43 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+5*diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{x}+c_2 \,{\mathrm e}^{-6 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+5*D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-6 x}+c_2 e^x \end{align*}
Sympy. Time used: 0.085 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 6 x} + C_{2} e^{x} \]