Internal
problem
ID
[23501]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
100
Problem
number
:
19
Date
solved
:
Thursday, October 02, 2025 at 09:42:31 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+7/2*x*diff(y(x),x)-3/2*y(x) = 0; ic:=[y(-4) = 1, D(y)(-4) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+7/2*x*D[y[x],x]-3/2*y[x]==0; ic={y[-4]==1,Derivative[1][y][-4] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 7*x*Derivative(y(x), x)/2 - 3*y(x)/2,0) ics = {y(-4): 1, Subs(Derivative(y(x), x), x, -4): 0} dsolve(ode,func=y(x),ics=ics)