Internal
problem
ID
[23502]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
100
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 09:42:32 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)+4*x^2*diff(diff(y(x),x),x)-8*x*diff(y(x),x)+8*y(x) = 0; ic:=[y(1) = 0, D(y)(1) = 1, (D@@2)(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+4*x^2*D[y[x],{x,2}]-8*x*D[y[x],x]+8*y[x]==0; ic={y[1]==0,Derivative[1][y][1] ==1,Derivative[2][y][1] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 4*x**2*Derivative(y(x), (x, 2)) - 8*x*Derivative(y(x), x) + 8*y(x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 1, Subs(Derivative(y(x), (x, 2)), x, 1): 1} dsolve(ode,func=y(x),ics=ics)