87.17.12 problem 12

Internal problem ID [23604]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 12
Date solved : Thursday, October 02, 2025 at 09:43:23 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)-y(x) = x*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} c_2 +{\mathrm e}^{-x} c_1 +\frac {\left (x -1\right ) x \,{\mathrm e}^{x}}{4} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 35
ode=D[y[x],{x,2}]-y[x]==x*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{8} e^x \left (2 x^2-2 x+1+8 c_1\right )+c_2 e^{-x} \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x) - y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} e^{- x} + \left (C_{1} + \frac {x^{2}}{4} - \frac {x}{4}\right ) e^{x} \]