Internal
problem
ID
[23605]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
127
Problem
number
:
13
Date
solved
:
Thursday, October 02, 2025 at 09:43:24 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-4*y(x) = exp(-2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}]-4*y[x]==Exp[-2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*y(x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - exp(-2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)