87.17.35 problem 36

Internal problem ID [23627]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 36
Date solved : Thursday, October 02, 2025 at 09:43:37 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }+y^{\prime }&=x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ y^{\prime \prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 15
ode:=diff(diff(diff(y(x),x),x),x)+diff(y(x),x) = x; 
ic:=[y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+\sin \left (x \right )+\cos \left (x \right )-1 \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=D[y[x],{x,3}]+D[y[x],x]==x; 
ic={y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2}{2}+\sin (x)+\cos (x)-1 \end{align*}
Sympy. Time used: 0.098 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1, Subs(Derivative(y(x), (x, 2)), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{2} + \sin {\left (x \right )} + \cos {\left (x \right )} - 1 \]