87.17.36 problem 37

Internal problem ID [23628]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 37
Date solved : Thursday, October 02, 2025 at 09:43:37 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{6}-{\mathrm e}^{-2 x} c_1 +{\mathrm e}^{-x} c_2 \]
Mathematica. Time used: 0.014 (sec). Leaf size: 29
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^x}{6}+c_1 e^{-2 x}+c_2 e^{-x} \end{align*}
Sympy. Time used: 0.115 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - exp(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{- x} + \frac {e^{x}}{6} \]