Internal
problem
ID
[23659]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
135
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:43:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = csc(x); ic:=[y(1/2*Pi) = 0, D(y)(1/2*Pi) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==Csc[x]; ic={y[Pi/2]==0,Derivative[1][y][Pi/2] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - csc(x) + Derivative(y(x), (x, 2)),0) ics = {y(pi/2): 0, Subs(Derivative(y(x), x), x, pi/2): 1} dsolve(ode,func=y(x),ics=ics)