87.18.19 problem 19

Internal problem ID [23660]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 135
Problem number : 19
Date solved : Thursday, October 02, 2025 at 09:43:59 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = tan(x); 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \sin \left (x \right )+\cos \left (x \right )-\cos \left (x \right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 17
ode=D[y[x],{x,2}]+y[x]==Tan[x]; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) (-\text {arctanh}(\sin (x)))+\sin (x)+\cos (x) \end{align*}
Sympy. Time used: 0.282 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - tan(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\frac {\log {\left (\sin {\left (x \right )} - 1 \right )}}{2} - \frac {\log {\left (\sin {\left (x \right )} + 1 \right )}}{2} + 1 - \frac {i \pi }{2}\right ) \cos {\left (x \right )} + \sin {\left (x \right )} \]