Internal
problem
ID
[23666]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
135
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 09:44:04 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-3*y(x) = 1/x^3; ic:=[y(1/4) = 0, D(y)(1/4) = 14/9]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-3*y[x]==1/x^3; ic={y[1/4]==0,Derivative[1][y][1/4] ==14/9}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 3*y(x) - 1/x**3,0) ics = {y(1/4): 0, Subs(Derivative(y(x), x), x, 1/4): 14/9} dsolve(ode,func=y(x),ics=ics)