Internal
problem
ID
[23667]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
135
Problem
number
:
26
Date
solved
:
Thursday, October 02, 2025 at 09:44:05 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
With initial conditions
ode:=(x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = (x^2+1)^2; ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==(x^2+1)^2; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) - (x**2 + 1)**2 + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(-x**2 + Derivative(y(x), (x, 2)) -