87.18.26 problem 26

Internal problem ID [23667]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 135
Problem number : 26
Date solved : Thursday, October 02, 2025 at 09:44:05 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=\left (x^{2}+1\right )^{2} \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 16
ode:=(x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = (x^2+1)^2; 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = x +\frac {1}{2} x^{2}+\frac {1}{6} x^{4} \]
Mathematica. Time used: 0.03 (sec). Leaf size: 18
ode=(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==(x^2+1)^2; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{6} x \left (x^3+3 x+6\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) - (x**2 + 1)**2 + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(-x**2 + Derivative(y(x), (x, 2)) -