Internal
problem
ID
[23672]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
149
Problem
number
:
2
(c)
Date
solved
:
Thursday, October 02, 2025 at 09:44:08 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -3*x__1(t)+4*x__2(t), diff(x__2(t),t) = -2*x__1(t)+3*x__2(t)]; ic:=[x__1(0) = -1, x__2(0) = 3]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==-3*x1[t]+4*x2[t],D[x2[t],t]==-2*x1[t]+3*x2[t]}; ic={x1[0]==-1,x2[0]==3}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x1 = Function("x1") x2 = Function("x2") ode=[Eq(3*x1(t) - 4*x2(t) + Derivative(x1(t), t),0),Eq(2*x1(t) - 3*x2(t) + Derivative(x2(t), t),0)] ics = {x1(0): -1, x2(0): 3} dsolve(ode,func=[x1(t),x2(t)],ics=ics)