Internal
problem
ID
[23673]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
149
Problem
number
:
3
Date
solved
:
Sunday, October 12, 2025 at 05:55:14 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 2*sin(t)*x__1(t)+ln(t)*x__2(t), diff(x__2(t),t) = 1/(t-2)*x__1(t)+exp(t)/(t+1)*x__2(t)]; ic:=[x__1(3) = 0, x__2(3) = 0]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==2*Sin[t]*x1[t]+Log[t]*x2[t],D[x2[t],t]==1/(t-2)*x1[t]+Exp[t]/(1+t)*x2[t]}; ic={x1[3]==0,x2[3]==0}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x1 = Function("x1") x2 = Function("x2") ode=[Eq(-2*x1(t)*sin(t) - x2(t)*log(t) + Derivative(x1(t), t),0),Eq(Derivative(x2(t), t) - x2(t)*exp(t)/(t + 1) - x1(t)/(t - 2),0)] ics = {x1(3): 0, x2(3): 0} dsolve(ode,func=[x1(t),x2(t)],ics=ics)