Internal
problem
ID
[23683]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
149
Problem
number
:
23
Date
solved
:
Thursday, October 02, 2025 at 09:44:13 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = x__2(t)-x__3(t)+x__4(t), diff(x__2(t),t) = -x__2(t)+x__4(t), diff(x__3(t),t) = x__3(t)-x__4(t), diff(x__4(t),t) = 2*x__4(t)]; dsolve(ode);
ode={D[x1[t],t]==x2[t]-x3[t]+x4[t],D[x2[t],t]==-x2[t]+x4[t],D[x3[t],t]==x3[t]-x4[t],D[x4[t],t]==x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x1 = Function("x1") x2 = Function("x2") x3 = Function("x3") x4 = Function("x4") ode=[Eq(-x2(t) + x3(t) - x4(t) + Derivative(x1(t), t),0),Eq(x2(t) - x4(t) + Derivative(x2(t), t),0),Eq(-x3(t) + x4(t) + Derivative(x3(t), t),0),Eq(-x4(t) + Derivative(x4(t), t),0)] ics = {} dsolve(ode,func=[x1(t),x2(t),x3(t),x4(t)],ics=ics)