Internal
problem
ID
[23684]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
149
Problem
number
:
25
and
27
Date
solved
:
Thursday, October 02, 2025 at 09:44:14 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 5*x__1(t)+2*x__2(t)+2*x__3(t), diff(x__2(t),t) = 2*x__1(t)+2*x__2(t)-4*x__3(t), diff(x__3(t),t) = 2*x__1(t)-4*x__2(t)+2*x__3(t)]; ic:=[x__1(0) = 2, x__2(0) = 1, x__3(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==5*x1[t]+2*x2[t]+2*x3[t],D[x2[t],t]==2*x1[t]+2*x2[t]-4*x3[t],D[x3[t],t]==2*x1[t]-4*x2[t]+2*x3[t]}; ic={x1[0]==2,x2[0]==1,x3[0]==0}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x1 = Function("x1") x2 = Function("x2") x3 = Function("x3") ode=[Eq(-5*x1(t) - 2*x2(t) - 2*x3(t) + Derivative(x1(t), t),0),Eq(-2*x1(t) - 2*x2(t) + 4*x3(t) + Derivative(x2(t), t),0),Eq(-2*x1(t) + 4*x2(t) - 2*x3(t) + Derivative(x3(t), t),0)] ics = {x1(0): 2, x2(0): 1, x3(0): 0} dsolve(ode,func=[x1(t),x2(t),x3(t)],ics=ics)