Internal
problem
ID
[23700]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
16
Date
solved
:
Sunday, October 12, 2025 at 05:55:15 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[t*diff(x(t),t) = 3*x(t)-2*y(t), t*diff(y(t),t) = x(t)+y(t)-t^2]; ic:=[x(1) = 1, y(1) = 1/2]; dsolve([ode,op(ic)]);
ode={t*D[x[t],t]==3*x[t]-2*y[t],t*D[y[t],t]==x[t]+y[t]-t^2}; ic={x[1]==1,y[1]==1/2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(t*Derivative(x(t), t) - 3*x(t) + 2*y(t),0),Eq(t**2 + t*Derivative(y(t), t) - x(t) - y(t),0)] ics = {x(1): 1, y(1): 1/2} dsolve(ode,func=[x(t),y(t)],ics=ics)