Internal
problem
ID
[23701]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 09:44:24 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 3*x(t)-2*y(t)+2*t^2, diff(y(t),t) = 5*x(t)+y(t)-1]; ic:=[x(0) = 534/2197, y(0) = 567/2197]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==3*x[t]-2*y[t]+2*t^2,D[y[t],t]==5*x[t]+y[t]-1}; ic={x[0]==534/2197,y[0]==567/2197}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*t**2 - 3*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-5*x(t) - y(t) + Derivative(y(t), t) + 1,0)] ics = {x(0): 534/2197, y(0): 567/2197} dsolve(ode,func=[x(t),y(t)],ics=ics)