Internal
problem
ID
[23713]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
29
Date
solved
:
Thursday, October 02, 2025 at 09:44:31 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(c__1(t),t) = -k/V__1*c__1(t)+k/V__1*c__2(t), diff(c__2(t),t) = k/V__2*c__1(t)-k/V__2*c__2(t)]; dsolve(ode);
ode={D[c1[t],t]==-k/v1*c1[t]+k/v1*c2[t],D[c2[t],t]==k/v2*c1[t]-k/v2*c2[t]}; ic={}; DSolve[{ode,ic},{c1[t],c2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") k = symbols("k") v1 = symbols("v1") v2 = symbols("v2") c1 = Function("c1") c2 = Function("c2") ode=[Eq(k*c1(t)/v1 - k*c2(t)/v1 + Derivative(c1(t), t),0),Eq(-k*c1(t)/v2 + k*c2(t)/v2 + Derivative(c2(t), t),0)] ics = {} dsolve(ode,func=[c1(t),c2(t)],ics=ics)