Internal
problem
ID
[23714]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
3.
Linear
Systems.
Exercise
at
page
161
Problem
number
:
31
Date
solved
:
Thursday, October 02, 2025 at 09:44:31 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = a*(b-x(t))-c*f*y(t), diff(y(t),t) = d*(x(t)-y(t))-c*f*y(t)-a*y(t)]; ic:=[x(0) = b, y(0) = d*b/(a+d)]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==a*(b-x[t])-c*f*y[t],D[y[t],t]==d*(x[t]-y[t])-c*f*y[t]-a*y[t] }; ic={x[0]==b,y[0]==d*b/(a+d)}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") b = symbols("b") d = symbols("d") a = symbols("a") c = symbols("c") f = symbols("f") x = Function("x") y = Function("y") ode=[Eq(-a*(b - x(t)) + c*f*y(t) + Derivative(x(t), t),0),Eq(a*y(t) + c*f*y(t) - d*(x(t) - y(t)) + Derivative(y(t), t),0)] ics = {x(0): b, y(0): b*d/(a + d)} dsolve(ode,func=[x(t),y(t)],ics=ics)