Internal
problem
ID
[23877]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
6.
Boundary
value
problems.
Exercise
at
page
262
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 09:46:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+3*y(x) = ln(x); ic:=[y(1) = A, y(2) = B]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+3*y[x]==Log[x]; ic={y[1]==A,y[2]==B}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A = symbols("A") B = symbols("B") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 3*y(x) - log(x),0) ics = {y(1): A, y(2): B} dsolve(ode,func=y(x),ics=ics)