Internal
problem
ID
[23878]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
6.
Boundary
value
problems.
Exercise
at
page
262
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 09:46:13 PM
CAS
classification
:
[[_2nd_order, _quadrature]]
With initial conditions
ode:=diff(diff(y(x),x),x) = 0; ic:=[y(0) = c__1, y(L) = c__2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]==0; ic={y[0]==c1,y[L]==c2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") L = symbols("L") c1 = symbols("c1") c2 = symbols("c2") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)),0) ics = {y(0): c1, y(L): c2} dsolve(ode,func=y(x),ics=ics)