Internal
problem
ID
[23879]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
6.
Boundary
value
problems.
Exercise
at
page
262
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:46:14 PM
CAS
classification
:
[[_2nd_order, _quadrature]]
With initial conditions
ode:=-1/2*diff(diff(u(x),x),x) = x; ic:=[u(0) = 0, u(1) = 0]; dsolve([ode,op(ic)],u(x), singsol=all);
ode=-1/2*D[u[x],{x,2}]==x; ic={u[0]==0,u[1]==0}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") u = Function("u") ode = Eq(-x - Derivative(u(x), (x, 2))/2,0) ics = {u(0): 0, y(1): 0} dsolve(ode,func=u(x),ics=ics)
ValueError : Invalid boundary conditions for Function