Internal
problem
ID
[23976]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
35
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:48:26 PM
CAS
classification
:
[`x=_G(y,y')`]
ode:=2*x^3*y(x)+(2*x^2*y(x)^2+2*y(x)^4+ln(y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^3*y[x])+(2*x^2*y[x]^2+2*y[x]^4+Log[y[x]] )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**3*y(x) + (2*x**2*y(x)**2 + 2*y(x)**4 + log(y(x)))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*x**3*y(x)/(2*x**2*y(x)**2 + 2*y(x)**4 + log(y(x))) + Derivativ