Internal
problem
ID
[23977]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
35
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:48:27 PM
CAS
classification
:
[_linear]
ode:=diff(y(x),x) = 3*x^2*y(x)-3*x^4+2*x^2-2*y(x)+2*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,1}]==3*x^2*y[x]-3*x^4+2*x^2-2*y[x]+2*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**4 - 3*x**2*y(x) - 2*x**2 - 2*x + 2*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)